
3

Final Report--Insensitivity of Control System Performance to Controller and

System Parameters

NASA Ames Project Number NAG21311

By William S. Levine, Project Director

Department of Electrical And Computer Engineering

University of Maryland

2415 A. V. Williams Building

College park, Maryland 20742-3285

April 1, 1999 to June 24, 2001



Final Report--Insensitivity of Control SystemPerformanceto Controller and
SystemParameters

NASA AmesProject Number NAG21311
By William S.Levine,Project Director

June24,2001

Abstract:

An experimental and theoretical study of the CONDUIT sensitivity tools was

conducted. The literature on sensitivity in nonlinear programming was reviewed to see in

what ways it could be applied to CONDUIT. One result of this was the conclusion that

the current insensitivity measure in CONDUIT is the right one. The question of scaling of

the specifications in CONDUIT was also studied. Many simple examples were created,

analyzed and, in most cases, solved. However, no general solution to the scaling problem

was found. Instead, the appropriate scaling needs to be determined by review of a

reasonable number of real aircraft design problems.

Introduction:

CONDUIT is an assistant to a control system designer. One of the most

important things for an assistant to do is to communicate effectively with his or her

supervisor. It is especially important for the assistant to tell its supervisor when it is

having a problem and, if possible, why. CONDUIT already has very good ways to

communicate progress and status to its supervisor. Sometimes CONDUIT stops making

significant progress on a problem. Although it is fairly obvious when this happens, it is

not necessarily obvious why. Even more importantly, it would be very helpful if

CONDUIT could provide the designer/supervisor with information that would help him

understand the difficulty and find means to overcome it.

The work reported here was devoted to studying a proposed way for CONDUIT to

communicate the structure, in the vicinity of the current values of the design parameters,

of the problem it is trying to solve. In this case, by structure, we mean the shape of the

function that CONDUIT is trying to minimize. For several reasons, which will be

explained in the body of this report, this structural information is entirely based on

numerically computed first derivatives of the specifications. An additional, and more

important objective, was to develop ways for the designer to interpret this information

and use it to alter the design problem to make it solvable. Note that it is not hard to

create a design problem for which there is no solution. It is important for CONDUIT to

indicate this to the designer/supervisor Lastly, it is important to know how sensitive a

solution is to small variations in the parameters.

Background:

At its heart CONDUIT's design approach is to solve a sequence of nonlinear

programming problems. More precisely, at any iteration it is trying to minimize a

function f_) subject to a collection of constraints that can be represented as xe{x:



g_)_<_l }. Here x is an n-vector of design parameters; g_) is an m-vector of functions; 1

is the m-vector consisting of all ones; f_) is the maximum of the active specifications

[1]. Although CONDUIT can evaluate the functions f_) and g_), their functional form

is not available analytically. Computing f_) or g_) involves first running the Simulink

or Matrix-X model of the aircraft and then using the results of the simulation to compute

the values of the specifications. These specifications then give the values of f_) and

g_). This means that the user of CONDUIT knows very little about the form of the

functions. For example, he or she does not know if they are convex or concave, nor how

smooth they are. The relative size of the functions is also unknown. All of these possible

properties are important determinants of the difficulty of solving the nonlinear

programming problem. For example, there is a collection of duality theorems in

nonlinear programming that upper bound the optimal value and guarantee existence of an

optimal solution [2]. These results require smoothness (i.e. the existence of at least one

continuous derivative) at least and, for the strongest results, convexity of f_) and

concavity of g_).

In fact, most of the theory of nonlinear programming assumes the functions

involved, f(x) and g_) in our notation, have at least one continuous derivative. We will

demonstrate in the next section that the nonlinear programming problems that CONDUIT

is trying to solve are often less smooth than this. That is, the effective f_) in many

CONDUIT problems is only continuous. Its first derivative is often discontinuous at the

value of x that is returned at the end of an iteration. Nonetheless it is useful to review

the standard results on the sensitivity of nonlinear programming problems.

First, it is instructive to understand the limitations of the theory. It is essentially

impossible to prove that there is a solution to a nonlinear programming problem if one

does not have any information about the functions f(x) and g_). This reflects the

mathematical reality. For example, a golf course has at least 18 local minima. Think of

the surface of the course as the function f_) with x two-dimensional. The function is

typically smooth except at the edges of the holes. Imagine that the holes can be as deep

as you like. If you did not know it was a golf course and all you could do was determine

the value of f(x) at individual values of x, then the probability of finding even one of the

holes would be negligibly small. Knowing it was a golf course would not help you find
the local minima.

Fortunately, CONDUIT does not even need to find a local minimum. All that is

needed is a solution that satisfies all of the specifications and some indication that this

solution is insensitive to small changes in the design parameters and specifications. The

classic control theoretic measure of sensitivity is due to Bode [3]. He defined the

sensitivity of performance of a control system to the scalar parameter x at the point Xo to
be

S = (Of(Xo)/i)x)/(f(Xo)/X o) (1)

where f(x) is some measure of performance. Note that S is a dimensionless quantity. The

natural definition for insensitivity is then just I/S.



It is instructiveto applythisdefinition thesimplestsituationthatmightappearin
CONDUIT. Specifically,supposethatCONDUIThasfoundanunconstrainedlocal
minimum. This is oneof the cases where CONDUIT indicates that it has solved the

design problem. Suppose also that a single objective is dominant at the optimal _x0and

that objective is once differentiable. Note that x_0is a vector. It is well known that

af_o)/a_x - o (2)

at such an x0. Thus, the sensitivity, S, with respect to any of the components of the vector

x0 must be zero. The insensitivity must be infinite. This is completely satisfactory.

Unfortunately, the next simplest situation that occurs in CONDUIT is not so neat.

Because CONDUIT is generally solving a multi-objective problem, it often happens that

a local minimum occurs at a point where two objectives compete. Again, we assume the

minimum is unconstrained. Now, the conditions that must be satisfied are

Of_(x)/Ox < 0 x > xo

Ofj(x)/Ox>O x<x o
(3)

Note that the partial derivative does not exist at Xo. The scalar case is shown. The vector

case is more complicated. The conditions (3) must hold in every direction. Clearly,

conditions (3) do not depend on the size of the partial derivatives; they depend only on

the sign. These facts have two implications for the insensitivity. First, Bode's definition

does not apply at x0 because the required derivative does not exist. Second, the

magnitude of a satisfactory insensitivity need not be infinite.

What happens when CONDUIT finds a solution to a design problem but the

solution is on the boundary of one of the constraints? This is fundamentally the same as

the previous case. Conditions (3) apply. The only difference is that one or more of the

functions is a constraint gi(.__) rather than an objective.

To summarize, in most cases where CONDUIT finds an optimal solution the local

behavior of f_) near the solution satisfies (3). Thus, the first derivatives of the active

specifications are available but there is a discontinuity in the actual performance metric.

As a result, there is no clear and precise scaling rule. Instead, the proper scaling is, like

the proper specifications, going to be the result of experience with a variety of problems.

The sensitivity question does not only arise at a solution. In fact, in most cases

CONDUIT does not actually compute an optimal value for the design parameters. The

designer most often stops CONDUIT at a satisfactory design after CONDUIT has

performed several iterations without significant improvement in the overall performance.

Clearly, a designer who stops CONDUIT needs to know if his or her design is

insensitive. If it is not, it is probably worthwhile to allow CONDUIT to continue, even

though the rate of improvement is small. Furthermore, it is often possible to use the

insensitivity data as the basis for a modification of the problem that improves the rate of



improvement.Lastly,CONDUIT sometimesstopsmakingsignificantprogresstowardsa
solutioneventhoughit is still in phase1or 2. In essence,it bogsdownbeforeit achieves
ausabledesign. Again,it is possibleto usetheinsensitivityinformationto modify the
problem,therebyenablingCONUIT to progressatareasonableratetowardsan
acceptabledesign.

Theoreticalinsightinto all of thesesituationscanbeobtainedfrom oneof thecore
resultsin the theoryof nonlinearprogramming.Theresultof interestis usedin theproof
of theKuhn-Tuckertheorem.Thetheoremis of interestin its ownright. Thecontextis
asfollows:

Giventheproblem, maximizef(x.)=minimize-f_)
Subjectto g(x)_<__0

Wheref_) andg(A)areasbeforeandassumedto bedifferentiable.Theonly substantive
changeis themaximizationinsteadof minimization. As shown,thisamountsto anadded
minussign. Thestatementof theresultsis nicerfor maximizationproblems.

Kuhn-Tucker Theorem [4]: Let x* be an optimal solution to the problem stated above.

Suppose the Constraint Qualification (CQ) is satisfied at x*. Then there exists _,i*>0, for

all i such that gi(A*)=0, such that

_)f (_x*)l _x = _ 2,'i)g, (x*)/_x (4)
i

Note that the summation is over only those i for which giCx*)=0. Those i for gi(__*)<0

play no role. The condition that CQ holds is interesting and important for CONDUIT.

Roughly, CQ means that the admissible directions--that is, the directions in which x*

could be perturbed and the new x would still satisfy the constraints--are given by the

gradients of the gi(A). There are many versions of CQ [2,4] but it is usually impractical to

verify them.

To understand the Kuhn-Tucker Theorem it is helpful to know Farkas' Lemma [see 2 for

proof].

Farkas' Lemma: Let Ai, l<i<k, be n-dimensional row vectors. Let c be an n-

dimensional row vector. The following statements are equivalent:

(i) For all xeR n, A_<0 for l<i<k implies cx<0.

(ii) There exist Xi>0, l<i_, such that

k

c = __.,AiA i
i=1

Clearly, the Kuhn-Tucker Theorem uses (ii) in Farkas' lemma to express (i). Condition

(i) as used in (4) says that the objective, f_), is worse for small changes in any

admissible direction. CQ implies that the gradients correctly give the admissible

directions.



Theimportantpoint for CONDUIT usersis actuallythat (i) holdsratherthanthat
(4) is true. To understandthis,rememberfirst thatfor anyfunction,sayh(A),thegradient
Oh(x)�Ox givesthedirectionof steepestincrease.Thus,(4) saysthatthedirectionof
steepestincreasein f(A),asonemovesashortdistancefrom x*, is in the cone formed by

taking positive linear combinations of the directions of steepest ascent of all the active

constraints. But, (i) says---once we replace the Ai by Ogi(y.)/Ox and c by Of(x)/Ox--

that perturbing x* in any direction that is admissible when the constraint boundaries are

replaced by their tangents results in an increase in f_).

The logic of the Kuhn-Tucker Theorem implies that the opposite of (i) holds

when constraints are active and the current value of x is not optimal. Notice that the only

information used is either the functions or their gradients.

Lastly, the theory of nonlinear programming includes a collection of sensitivity

results. Sensitivity questions are the main issues addressed in the duality theory.

However, most of the results require strong assumptions that are not satisfied in the

typical CONDUIT problem. Specifically, the true sensitivity results require that f(3.) be

concave (for a problem in which f(3.) is to be maximized) and the gi(__) must be convex.

Thus, we have decided not to include a discussion of these results here. They can be

found in [2,4].

Results:

The brief review of the theory of nonlinear programming shows that the decision

to make the CONDUIT sensitivity measures depend only on gradients was exactly

correct. Although the original rationale was primarily that second derivatives would be

too inaccurate to be useful, the theory shows that the second derivatives often do not

exist. More importantly, it is the gradients that really matter.

The question of how to scale the sensitivity measures in CONDUIT is much

trickier. Basically, although there is a large literature on scaling (see, e.g. [5]) there do

not seem to be any general methods. Mathematically, the question appears to be too

imprecise. In fact, in CONSOLE-OPTCAD, the predecessor to CONDUIT as well as the

optimization engine inside CONDUIT, the developers assumed the user/designer would

routinely rescale the specifications on order to help the computer solve any given design

problem. Their argument was that it is impossible to know in advance what the scaling

of any given specification might be. Hence, it would be necessary to modify the specs--

rescale--in the course of solving a problem.

However, in a limited class of problems, such as the design of stability and

control augmentation systems (SCAS) for aircraft, the range of parameter values and of

specifications will certainly be narrower than mathematicians would expect. In part this

is because designers will normally do some scaling, often unconsciously. After all, both

designers and specification writers expect the numbers they get to be reasonable.

Furthermore, the choice of units is a form of scaling. The dimensions of the wing of a

large aircraft are not given in millimeters because the resulting number would be too



large. Thus,wesupportthedecisionnot to allow usersto rescalethespecsroutinelyeven
thoughthis is afeatureof CONSOLE-OPTCAD.

By thereasoninggivenaboveit is clearthatthescalingquestionneedsto be
addressedby examiningthescalingissuein a largecollectionof typicalaircraft
problems.Academic examples will simply not work; they are not representative of the

numerical values found in real applications. Thus, we could not improve on the scaling

proposed by Chad Frost [6, pp. 28-33].

We have created and solved many examples in CONDUIT to study and illustrate

the sensitivity question. Many of these were done using earlier versions of CONDUIT

and have thus been superseded. We have included a small but representative sample,

redone using CONDUIT 3.0 below. These are all versions of the same simplified XV-15

problem in XVLab3 in the CONDUIT course notes [7]. The block diagram for this

problem, modified to include a redundant design parameter (dpp_kphired), is shown

below in Fig. 1. This is followed by Fig. 2 in which the corresponding specifications are

displayed.

SimpllfNKIXV15 ControlSystem
Rol Ct_nnel (ForwardA_ht)

rollrate _ [rad/sec]

pti
tad

OymOin

Tp mill gyro

P
rad/sec

doo/r__ _ la_]

p Iaoo_,¢l
d_rad

Figure 1 Block diagram of XV-15 with redundant design parameter
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Figure 2 Handling qualities window for XV-15

This problem has been deliberately designed to have a redundant design

parameter. Starting with the initial values dpp_kphi=l/2, dpp_kphired=l/2, and

dpp_Tp=l we obtained the sensitivity display shown in Fig. 3. Note that the sensitivities

of the duplicate design parameters are identical, as expected. The conditional

correlations (not shown) show that the two redundant design parameters (DPs) have

conditional correlation equal to one, as they should. For reference purposes, the

conditional correlation between dpp_Tp and dpp_kphi is -.8875. Of course, the pseudo

Hessian matrix is not invertible so no Cramer-Rao bounds are computed. Surprisingly,

CONDUIT has no real difficulty in solving this problem. The redundant design

parameter has no noticeable affect. Of course, it does slow down the computations but in

an essentially academic problem this is buried in networking and other computer
overhead.
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Figure 3 Sensitivity for XV-15 with redundant design parameter

2.144

2 2.5

Stopping after several iterations results in a reasonable solution to the design

problem. All the specifications are satisfied at level I. The DPs have values

dpp_kphi=.5352, dpp kphired=.5352, and dpp_Tp=l.05. The corresponding sensitivities

are shown in Fig. 4. Of course, the conditional correlation between the redundant

parameters is still one. The conditional correlation between dpp_Tp and dpp kphi has

increased in magnitude to -.9493.
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Figure 4 Sensitivity at reasonable solution
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The next pair of examples was developed to study scaling directly. The redundant

DP was eliminated. Instead, a gain was placed in series with dpp_kphi as shown in Fig.
5.

dpp_kphi rescaler

Figure 5 The new structure of dpp_kphi

The resulting insensitivities when the DPs have values dpp_kphi=.0001 and

dpp_Tp=l are shown in Fig. 6. Note that the value for dpp_kphi was chosen to produce

exactly the effective value one, identical to the original problem without the rescaler.
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Figure 6 The insensitivities re.scaled by 1000
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Note that the insensitivity of dpp_kphi is different from its value in Fig. 3. This is

surprising because the effective value of the design parameter is unchanged from the first

example. Some aspect of the scaling scheme in CONDUIT has presumably changed the

computed insensitivity. In any case, it is the rough magnitude that matters and that is

unchanged. In this case, the pseudo Hessian is invertible so Cramer-Rao bounds are

computed. They are shown in Fig. 7.
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Figure 7 Cramer-Rao bounds for the rescaled by 1000 problem
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Next, the gain in the rescaler, shown in Fig.5, was changed from 1000 to .001.

The initial value of dpp_kphi was set to 1000. Again, the effective value of the DP is

unchanged from the previous examples. The resulting insensitivities are shown in Fig. 8.

However, the insensitivity computed for dpp_kphi is identical to the one computed when
the rescaler is set to 1000.
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Figure 8 The insensitivities when the rescaler is .001
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I6.35e + 07 - 654 1
In this case the pseudo Hessian takes the value L - 654 0.00854.J" This is

too ill conditioned to be invertible. Thus, no Cramer-Rao bounds are computed.

The next example was obtained by replacing the rescaler by a DP as shown in Fig.

9. The resulting correlation between these two redundant DPs is geometric rather than

linear. Of course, the calculation of the conditional correlation is based on the

assumption that the DPs are linearly correlated. The resulting insensitivity array is shown

in Fig. 10.

ddd_kphi ddd_kphired

Figure 9 The rescaler has been replaced by a DP in series
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Figure 10 The insensitivity array when the redundant DPs are in series
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Notice that the insensitivity of dpp_kphi is identical to that of dpp_kphired, as

expected. The pseudo Hessian is not invertible so we do not get a conditional correlation.

Curiously enough, CONDUIT also solved this problem without any noticeable difficulty.

We also tried to start this problem from different initial values of the DPs.

Specifically, with dpp_kphi=lO0, dpp_kphired=.O1 and dpp_Tp=l we obtained the

sensitivity array shown in Fig. 11.
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Figure 11 Insensitivities when the redundant DPs have different values
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This is again somewhat of a surprise. The pseudo Hessians corresponding to

figures 10 and 11 are quite different, as expected. The scaling algorithm used in

CONDUIT is probably the cause of the unchanging insensitivities in the face of a

changing Hessian. However, this scaling algorithm is not described in any of the

publications we have and is unknown to us.

As was explained earlier, many other examples have been run although almost all

of these use an earlier version of CONDUIT. Some of these are available in [8]. Perhaps

the most significant aspect of these examples is that very few of them created significant

difficulties for the optimization routines in CONDUIT. This is in striking contrast to

what happens with real design problems, many of which have required the use of the

sensitivity tools to overcome poor scaling, redundant DPs, and specs.

Conclusions:

Because the gradients of the specifications with respect to the DPs are the most

important elements in solving CONDUIT problems, it is clearly true that the gradients

should be the basis of the sensitivity metrics. Computing the pseudo Hessian matrix and

using it to infer conditional correlations is harder to justify based on theoretical issues

alone. One could argue that greater emphasis should be placed on the gradients

themselves, rather than on what is effectively their squares. However, the success of the



CONDUIT sensitivitymetricsin severalrealdesignproblemscombinedwith their
similarity to theCIFERmetricsprovidecompellingargumentsthatthey arethebest
choice.

Thescalingquestioncannotbeansweredtheoretically.Thetheoreticalrangeof
possiblescalingsis muchtoolarge. It is muchlargerthantherealrange. Thus,it is
arguedthat theproperscalingshouldbedeterminedexperimentally.However,the
experimentsmustberealones.Academicandalmostacademicexamplessimplydonot
haveeithertheparameterrangeor thesizeto givea reasonablepictureof thescaling
problem.

Finally, wewereunableto generateasignificantgroupof simpleexamplesthat
reallyneededthesensitivitytools. Poorscalingandredundantparametersusuallydid not
causeCONDUIT anyseriousdifficulties. This is in strongcontrastto realapplications.
This is yet anotherargumentfor determiningscalingrulesfromreal problems.However,
thesensitivitytoolsworkedverywell, eventhoughtheywerenotneeded.In everycase
whereDPswereredundant,theCONDUIT sensitivitytoolsindicatedthis wasthecase.
Eventhoughin somecasesthenumericalvalueswereunexpected,theorderof magnitude
wasalwayscorrect.

Onequestionthatmightmerit furtherresearchis why CONDUIT hadsolittle
troublewith redundantDPsandpoorly scaledspecs.It is conjecturedthatthetwo issues
thatreallymatterare:
(a) thesizeof theproblem--i.e, thenumberof DPs,and
(b) theconditionalcorrelationsbetweenDPswhentheyarecloseto oneeventhoughthe

DPsarequitedifferent.
In ourexamples,thehighlycorrelatedDPswereessentiallythesame.
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